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WRAPPABILITY OF CURVES ON SURFACES

Royce W. Soanes
U.S. Army Armament Research, Development, and Engineering Center

Close Combat Armaments Center
Benet Laboratories

Watervliet, NY 12189-4050

ABSTRACT. In this paper, conditions are derived under which a path on a
general smooth surface is wrappable or capable of receiving an essentially one-
dimensional flexible filament under tension that clings to the surface
throughout its length and does not slip. Wrappability considerations are of
practical importance in the fabrication of filament-wound composite pressure
vessels, for instance. The general wrappability conditions derived are applied
to two special cases: general cylinders and general surfaces of revolution.

INTRODUCTION. Imagine a rotating spindle accepting string from some deliv-
ery point which moves parallel to the axis of the spindle. This is the essence
of the filament winding process where the "string" is replaced by a band of
epoxy impregnated fiber glass, for instance; layer upon layer of this filament is
evenly laid down; and the whole thing is ultimately cured or baked into a
filament-wound composite structure - often a pressure vessel. The spindle or
mandrel is designed so that it may be broken down into parts and removed sub-
sequent to curing, leaving only the wrappings embedded in the matrix material.
This paper considers the question of how the winding or wrapping process is
limited by the differential geometric nature of the mandrel's surface.

PRELIMINARIES. Begin with point P in three space:

P = iX + jY + kZ

Restrict P by parameterizing with respect to x and 6, defining a surface S
embedded in three space:

X=x

Y = r(x,9)sin 8

Z = r(x,G)cos 6

where r(x,6) is the radius of the surface. We require r to be sufficiently
smooth, positive, and 2c periodic in 6, making S a closed surface with an inside
and an outside. If P is further restricted by defining 9 in terms of x, P will
lie on a curve or path embedded in the surface S.

Let denote 1- ( ), and let s denote distance along curve c. The

tangent vector t to curve c is



~~~~~~~~~~. . . . . . . . . . . ...... . ... .. .~ --. " , "i/ i :',! i •

t u U

ds

and the curvature vector x of any curve c is

K isd =

ds

=

A family of vectors tangent to surface S at point P is

dP = Pxdx + Pede = Gt dx + t d9

Two independent vectors spanning the tangent space at P are therefore Px and Pg.
Now form the vector cross product of Px and Pg to obtain v, a vector normal to
the surface and pointing away from the outside of the surface.

= Px x Pg

WRAPPABILITY CONDITION I - NO LIFTOFF. Now, in order for c to be a wrap-
pable curve on surface S, it is necessary for a length of flexible filament
under tension to cling to c and S. In order for this clinging to take place, it
is necessary for c to see the outside of S as being convex. This will be the
case only if the curvature vector of c points away from the inside of the sur-
face. It is therefore necessary that the inner or dot product of v and K be
negative for clinging to take place. Now,

VK = V-(P"-tS")(s') -2

but

Pt = 0

therefore.

VK = VP"(s')-2

and since only the sign of V-K matters here, the function A is defined as

A= 2.P,,

When X is positive, a filament under tension tends to lift off the surface and
form a bridge between two distant points; when X is negative, the filament tends
to cling to the surface.

Now, the evaluation of A in terms of x, G, and r is outlined.
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First,

P' - Px + PeeQ

and

Poe= Pxx + 2Pxee' + Pe98' 2 
+ Pe"

but Pe is in the tangent space, so

V-Pe-O0

Hence,

A= av*P" a Pxx + 2v*PxgO' + V*P998 ,2

Note that all the inner products defining A are determined at a point on the
surface independently of the curve c and that the only thing that changes A at a
point is the direction of c determined by 0'. Therefore, all curves with the
same direction through a given point on the surface have the same value of A at
that point.

Continuing the evaluation of v.P" we have

Px = i+jYx + kZx

P= jYe + kZq

U = PxxPe = i(YxZe-YeZx) - jZq + kYe

Pxx = jYxx + kZxx

Pxe = jYxe + kZxe

Pee a JYee + kZee

The dot products in A are therefore

V.Pxx = YOZxx - ZqYxx

VPxe = Yezxe - zeYxe

V-Pee = YeZee - zeyee

Obtaining the partials in these dot products

Y = r sin e

Yx = Yrx/r



YV a Yrq/r + Z

Yxx a Yrxx/r

Yxe a (Yrxe Zrx)/r

Yee = {Y(rqe-r) + 2ZrqI/r

Z = r cos 0

Zx = Zrx/r

Ze = Zrg/r - Y

Z = Zrxx/r

Zxe = (Zrxe-Yrx)/r

zoo {Z(re0-r) - 2Yre/r

The dot products then become

VoPXX = rrxx

VePxe = rrxe - rxre

v*P00 a rree - 2r92 - r2

Hence,

A = rrxx + 2(rrxe-rxre)O' + (rr6e-2rqZ-r2)01'

= a9'2 + 2b9' + c

2 a

= a(e' + + cb
a a

It is clear that the sign of A is completely independent of 9' at points
for which ac > b. Hence, any curve is wrappable where ac > b2 and a < 0, but
the surface is unwrappable if ac > b2 and a > 0 anywhere. If ac < b, some
curves will be wrappable and others won't. In any case, given the radius func-
tion r, its partial derivatives at a point, and the direction of a curve through
that point, one can immediately compute whether or not a taut filament following
the curve will tend to lift from the surface.

Consider two special cases. For a surface of revolution, rg = 0.
Therefore, A = rr" - (rO')2 [1]. If r" < 0 everywhere, all curves on the
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surface of revolution are wrappable. Points for which r" > 0 are also wrappable
for curves with S' sufficiently large. No surface of revolution is unwrappable
in the sense of liftoff.

For a cylinder, rx = 0, and

A = a9'2 = (rree-2rea-r*)e'2

Hence, every curve on a cylinder is wrappable if a < 0 everywhere, but if a > 0
anywhere, the cylinder is unwrappable.

In this section the phrase "is wrappable" has meant "does not experience
filament liftoff or bridging during winding." In the next section, the defini-
tion of "wrappable" is augmented by considering friction between filament and
surface.

WRAPPABILITY CONDITION II - NO SLIPPAGE. If there were no friction between
filament and surface (or between filament and filament since the surface is
filament after the first layer is laid down), there would be only one type of
path along which one might wind filament without the filament slipping - a path
with no transverse (tangent to the surface and perpendicular to the filament)
forces acting on the filament - a path which curves neither left nor right in
the surface - a path with zero geodesic curvature - a geodesic path. If there
were no friction available, and only geodesic paths could be wound, there would
be no filament winding industry. In fact, for numerous reasons, it is seldom if
ever possible to wind along geodesic paths in practice [1]. The geodesic path
remains as an ideal, however, and in this section the degree of closeness to
this ideal is quantified.

Let

$ = force per unit length that filament exerts on surface = TK

where T is the scalar tension in the filament and K is the vector curvature of
the filament.

Note that the curvature vector can be resolved into a component tangent to
the surface and a component normal to the surface K = Kg + Kn (2] where the
tangent component of K is called the geodesic curvature vector and the normal
component is called the normal curvature vector.

The force that a small length of filament exerts on the surface is

(Ods = TKds = (Kg+Kn)TdS = IgTdS + KnTdS



Now. in, order to avoid slippage of this small section of filament, the
ratio of the magnitude of the tangent force to the magnitude of the normal force
should be less than ga, the coefficient of friction

IcgIrds kg

(or more precisely, 0 4' a a -k ~. ( A since we want kn <0). We call this

ratio of geodesic to normal curvature the slippage function a. This function
measures how close a given path comes to the ideal geodesic path (a a 0). The
evaluation of a is now detailed. First, if P is on the surface,

dP a Pxdx + PqdG

and

dS2 a dP-dP a Px-Pxdxg + 2Px'PgdxdO + PqSPqdS2

a Edxa + 2FdxdO + GdG'

Hence,

(sl)sa E +2FOC G012

for a point on a path on the surface.

We now define a Cartan frame [2-4] relative to the surface, i.e., an ortho-
normal basis having two vectors tangent to the surface and a third normal to it.
Let

a, a XII

aPx/(Px@PX)31

aPx/E4

and

03 = PxP/ax8 /V

but f roe vector algebra,

(AxB).(CxD) a (A.C)(B.0) -(A.O)(8.C)

Hence,

(PXXPe)'(PxXPe) z IPXXPeN II8

a(Px-Px)(Pe-Pe) - (XP)

aEG - Fx

6



Therefore,

03 - PxXP9i(EG-Ft)E

Now

@2 - e3xe

(PxxPe)xPx/(E%(EG-F2)i)

but again from vector algebra,

(AxB)xC - B(A.C) - A(B.C)

Hence,

(PxxPO)XPx = Pe(Px.Px) - Px(Px"Pe)

EP9 - FPx

and

a (EPe-FPx)/(E%(EG-F2)%)

Now, e1 and 02 span the tangent space (plane) at any point; therefore, the path
tangent vector t can be written

t a Ae-1 + Be2

If t makes an angle w with el,

ne*t a A a cos w
and

e2 .t a 8 - sin w

Hence

t = 0i cos w + 02 sin w

where w is the angle between the path and a meridian (9 * constant). Now

dt de1  d02
K as cos w + - sin w + (e2 cos w 01 sin W)

Let

T = e3xt

e3x(e1 cos w + •2 sin w)

e2 cOs w - 1 sin w

7



Therefore.

K co w; O + d02 sin w + T d'a
dsd ds

and

de de2 dsT-K =T * as - COS W + T as a- sin w + ds

but since

el.01a e2.e2 - 1

one has

de1  de2e e a;- n e2 • j z 0

and since
ele2 = 0

one has

de1  de2
ds e2 el

We therefore have

de1  de1T •d-ue2 cosw

and

T de2  de2  =02 de1ds - 0 -s

Therefore

de1  de1  + del dw
TK e2 c w0- c + e2 -sin +  e2 +

but

K a + Kn and T.Kn 2 0

hence,

T.K 9 T-Kg 2 IKgU = kg

and the geodesic curvature is

d dkg = 02 • * ,d = (e2 e1 ' . w')/s1

Now

k

8



so kn must be computed, but most of the work has already been done to find kn.

kn a 630K =K =JjTiSIIi~

Therefore,

e2-el' 
+ w-)

+

At this point, a few dot products must be computed. We have the identity

(P-P~w= Pv-Puw + PU-Pvw

Letting v u,

PU-PUw = POUw

Therefore

Px'Pxe = 3JE9

P9Pq %Gx

PxoPxx o %~Ex

and

PqePqe = j

Letting w =u,

(Pu*Pv)u = Pv-PUu + PUOPUV

= v'PUu + %~(PU"PU)v

or

Pv*PUu = (PU-Pv)U - (.Pv

Hence

Px-Pe9 F9 - JGX

9



and

PqP = Fx -30

Recalling

el = E%

and applying d/dx,

e'= Px'E-% + P(-)

=(PXX+PX98')E-% + P(-f)

but

Therefore 
2P=o

Now, e2*eel = (e2ePxx+e2.Pxee')/E~i

e~~x= (EPO-FPx'Px/(EhfIPI)

- (E(Fx - JEQ) - F(%Ex))/(E~i~vf)

e2-Pxe = (EPe-FPx).Pxe/(&i4lJU)

= (E(3jGx) -F(JEq))/(E4IJ)

and therefore

e~el= {E(2Fx-Eq) -~ + (EGx-FE)9'I/(2El1)

Now, consider the meridian angle w

eist = cos wi

= Px'tIE%

10



* Px.(Px+PeG')/(S'Elf)

= (E+Fe')/(s'Ei)

Therefore,
Tan ~i (E(s.)2 - (E+FG,)')

Tan w a= A-i
E + FO'

= (EjE+2F'G'"2 - (E,+2EFe'+,Fa6',

E + Fe'

= EG-F22JEG {UflI'

E+F' E + FO'

Solving for 6', we have

E Tan w
(EG-F2)i - F Tan w

Therefore, a can be computed in terms of x, 9, w, and W'.

The basic metric coefficients in terms of our parameterization are now com-
puted:

P = iX + jY + kZ

but

Px = i + jYx + kZx

and

Yx = Yrx/r

Zx = Zrx/r

hence,
rxa

E =PxPx =I +YX + Zx 1 + F- (Y2 +Z2) = 1 + rx2

Now

Pe = jYq + kZe

and

Y9 = Yre/r + Z

11



Z9 Zrg/r - Y

Hence

F =PX-Pe = YxVO + ZxZq

Yrx Yrg Zrx Zrg Y
r r r + )+Y

rxre

r (YZ+Zt)

=rxrg

Also

G Pep a yea + Z02

Y2r02  2YZrq
-----.------ + Z2

rr

Z2rgz 2YZt6+.--------------- - Ya
r

=r2 + r92

Now some of the more important relations can be summarized:

A =rrxx + 2(rrxg-rxrg)e' + (rrgg - 2re2-r2)(9')2

(s')2 - E + 2FO' +. G(9')2

112= EG - F2

a j----(e.el I + (01)A

e2e I E(2Fx-Eq) - FEx

+(EGX- FE9)9'1/(2EUI)

go E Tan wi
NO- F Tan w'

E = I + x

F = rxrg

G =r' + r92

12



Now consider the two special cases addressed before. First, the general

cylinder (rx - 0):

E = 1 , F = 0 , G = r2 + re2 , Gx a 0 Ex E6

lvi = G%

e2-e1 ' = 0

Tan w

so - (1+Tanz w)% = Sec w

Tan8
A = (rree-2re8 -r2) G

Secw G% (a

(rre-2re2-r2) Ta

, (ra+rea)3/IZC (a Cot_ WOl (rg+rea)a//a d (Ccw
(rree-2re9-r2) =rrq - 2r92 - r2 dx

hence,

(r2+re8)3/=j u' I

r8 + 2re= - rre

where u = Csc w. Note that u = 1 at turning points and u > I between turning
points. (A turning point is defined as a point at which 9' = w or i-t = 0.)
Also note that at points for which u' = 0, the path is geodesic. In addition,
S- 0 if r8e - -, while re and u' are bounded. This can be called a "knife
edge" condition where a is zero due to infinite normal curvature instead of zero
geodesic curvature. Now, consider the general surface of revolution (re = 0):

E - 1 + r' , F = 0 ,G = r , E9 0 = G

VIi = (EG)% = rV' j+r'

H E Tan = ( Tan w

e2-el = EG'e'/(2Elv#)

(E)3 Tan w
2(EG)i6 G

Go
- ETan (a

13



- E + G • E Tans w

6

s' = E4 Sec w = (1+r'2)'iSec w

= rr" - r2(9')2 = rr" - ra • E Tana w = rr" - (1+r' 2) Tang w
G

a ESecw (921 E 2' Tan '
rr" -E Tan' w '2G

- r±l~r2§. Tan ~( +Cot W W')
rr" - 71+r'2) Tan' w r-

r' dd d
r + Cot w W d; Inr + ; In Sin w = d In(r Sin w)

It is clear that if r Sin w = constant, a will be zero and the path will be
geodesic (Clairaut).

One can define a quasi-geodesic path on a surface of revolution by replacing

Clairaut's relation (2,3,5] with r Sin w = ro (1] where the function ro has the
following properties:

* ro(x) = r(x) at exactly two values of x (turning points), and

" ro(x) < r(x) at all points between the turning points.

The function ro is called the polar radius function, because it is the radius of
the surface at the boundaries of the uncovered polar regions (1]. Now, w will

be eliminated in favor of ro . Since

S in w = --
r

one has that

Sec w - r
(r=-ro 2)%

Tan w =------
(r'-ro)E

Sec w Tan w = rr
r2 - r2

14



and

d ro'ai Inr~o = r--

Hence, one finds after simplification that

r2 r o'I

ra-r
- rr"(+r' 2

Note the following: a = Iro'l at turning points; ro ' = 0 at geodesic points;

a = (-)'21 ro'I if r is linear; a - 0 if r" - -t; while r' and ro ' are bounded

(knife edge); and positivity of the denominator in a implies that

toa > rrt
>1+rI +rr"

It has been shown how the slippage function a can be computed for a general
closed surface (rx*O~r9) and what simplifications take place in the F 2 0 cases.
It should be emphasized, however, that a is more than just a number to be com-
pared with the coefficient of friction W to determine whether or not slippage
occurs. The slippage function a measures pointwise path quality and should
ultimately be usable to synthesize or define quality wrappable paths on general
closed surfaces.
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